Practice Test Answer and Alignment Document

The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items.

- The rubrics show sample student responses. Other valid methods for solving the problem can earn full credit unless a specific method is required by the item.
- In items where the scores are awarded for full and partial credit, the definition of partial credit will be confirmed during range-finding (reviewing sets of real student work).
- If students make a computation error, they can still earn points for reasoning or modeling.

Unit 1

7.	Part A: 5 Part B: see rubric	4.C.5-5/4.NF. 7
8.	Part A: 3/10 4/10 $=s$ or 4/10 $3 / 10$ $=s$ Part B: $\frac{7}{10}$ or equivalent	4.NF.3d
9.	A, E	4.NF.3a
10.	58	4.NBT.6-1
11.	A	4.NBT.1
12.	See rubric	4.D.1/4.NF.3d and 4.NF.4c

Unit 2

Item Number	Answer Key	Evidence Statement Key/ Content Scope
1.	Part A: Part B: $\frac{4}{10}$ (no equivalent accepted)	4.NF.A.Int. 1
2.	A	4.MD. 6

3.	0.4 meter		-			0.04 meter	
	0.3 meter		<			0.5 meter	4.NF. 7
	0.65 meter		>			0.61 meter	
4.	D						4.OA. 2
5.	See rubric						4.D.1/4.OA. 2
6.	$\begin{array}{\|l\|} \hline \text { Part A: } \mathbf{1 0} \\ \text { Part B: } 15 \end{array}$						4.OA.3-2
7.	B, E						4.OA.1-2
8.	A, B, D						4.OA.4-1
9.	15,803						4.NBT.4-1
10.	Part A:						4.MD. 7
	y	+	32	+		$=105$	
	$y, 32$, and 44 can be in any order. Part B: 29						

Unit 3

Item Number	Answer Key	Evidence Statement Key/ Content Scope
1.	$\mathbf{2 4}$	4. OA.3-2
2.	Part A: see rubric Part B: see rubric	4. C.5-6
3.	C	4. MD. 5
4.	B	4. NF.4b-1
5.	Part A: see rubric Part B: see rubric	$4 . C .5-1$
6.	$\mathbf{4 8}$	$4 . M D .1$
7.	$\mathbf{1 , 3 2 0}$	$4 . I n t .4$
8.	Part A: $\frac{35}{8}$ or equivalent	4. NF.Int.1

	Part B: $\frac{4}{8}$ or equivalent		
		Appears to to have at least 2 parallel sides	

Rubrics start on the next page.

Unit 1 \#3 Rubric Part A

Score	Description
1	Computation component: Student enters 20.
0	Student response is incorrect or irrelevant.
Unit 1 \#3 Rubric Part B	
Score	Description
2	Student response includes each of the following 2 elements. - Computation component: 5 students - Modeling component: Student explains how to use the bar graph to determine how many more students have 1 pet than 3 pets. Sample Student Response: I looked at the height of the bar to find the number of students with one pet and saw it was 35 . Then I looked at the height of the bar to find the number of students with 3 pets and saw it was 30 . I subtracted 30 from 35 and got 5 . So, there are 5 more students who have 1 pet than 3 pets. Note: A variety of explanations are valid, as long as it is clear that the student understands how to use the bar graph to answer the question.
1	Student response includes 1 of the 2 elements. If a computation mistake is made, credit cannot be given for the computation component, but 1 point can be given for stating a correct process in the explanation.
0	Student response is incorrect or irrelevant.
	Unit 1 \#3 Rubric Part C
Score	Description
3	Student response includes each of the following 3 elements. - Computation component: 201 - Modeling component: Student explains how to use the bar graph to solve the problem. - Modeling component: Students shows work using equations. Sample Student Response: I read the height of each bar to know how many students had 1 pet,

$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 2 pets, 3 pets, or 4 pets. I determined how many pets each bar } \\ \text { shows by multiplying the number of students by the number of pets } \\ \text { for each bar. Adding the numbers of pets for all the bars gives the } \\ \text { total. }\end{array} \\ \begin{array}{ll}35 \text { students have 1 pet } \quad 1 \times 35=35 \text { pets } \\ 20 \text { students have 2 pets } \quad 2 \times 20=40 \text { pets } \\ 30 \text { students have 3 pets } \quad 3 \times 30=90 \text { pets } \\ 9 \text { students have } 4 \text { pets } \quad 4 \times 9=36 \text { pets }\end{array} \\ 35+40+90+36=201 \text { total pets }\end{array}\right\} \begin{array}{l}\text { Note: A variety of explanations are valid as long as it is clear that the } \\ \text { student understands how to use the bar graph to answer the } \\ \text { question and shows work using equations. }\end{array}\right\}$

Unit 1 \#7 Rubric Part A	
Score	Description
1	Computation component: Student enters 5.
0	Student response is incorrect or irrelevant.
Unit 1 \#7 Rubric Part B	
Score	Description
2	Student response includes each of the following 2 elements. - Reasoning component: Student identifies Christy's incorrect reasoning. - Reasoning component: Student gives a valid explanation of how to correct the reasoning and provides a correct comparison. Sample Student Responses: Christy found the correct total distance of her runs, but her comparison is wrong. 0.5 is $\frac{5}{10}$ which equals $\frac{50}{100}$ so she should compare 47 to 50 , not 5 .

	50 is greater than 47, so $\frac{5}{10}>\frac{47}{100}$.
OR	
Christy's distance $\frac{47}{100}=0.47$ and Alex ran 0.5 mile, so she should	
compare 0.5 to 0.47. The 5 in tenths place in 0.5 has a greater value	
than the 4 in the tenths place in 0.47.	
Note: Other valid explanations are acceptable.	
$\mathbf{1}$	Student response includes 1 of the 2 elements.
$\mathbf{0}$	Student response is incorrect or irrelevant.

Unit 1 \#12 Rubric

Score	Description
3	Student response includes the following 3 elements. - Modeling Component: Gives one fraction pair that sums to $\frac{11}{6}$ - Modeling Component: Gives a different fraction pair that sums to $\frac{11}{6}$ - Modeling Component: States that when adding fractions with the same denominator, the numerators are added and the denominator stays the same Sample Student Response: $\frac{5}{6}$ and $\frac{6}{6}$ or $\frac{7}{6}$ and $\frac{4}{6}$ Each pair adds up to $\frac{11}{6}$ because when you add fractions with the same denominator, you add the numerators and the denominator does not change. Or other valid explanation.
2	Student response includes 2 of the 3 elements.
1	Student response includes 1 of the 3 elements.
0	Student response is incorrect or irrelevant.

Unit 2 \#5 Rubric

Score	Description
$\mathbf{3}$	Student response includes each of the following 3 elements.

$\left.\begin{array}{|c|l|}\hline & \begin{array}{c}\text { - Computation component: Rico had } 1276 \text { more yards than Ed } \\ \text { after the first three games. } \\ \text { - Modeling component: Student shows work or explains how to } \\ \text { determine the number of yards that Ed had and Rico had } \\ \text { after the } 3 \text { games. } \\ \text { - Modeling component: Student shows work or explains how to } \\ \text { determine how many more yards Rico had than Ed. }\end{array} \\ \text { Sample Student Response: } \\ \begin{array}{l}\text { I found that Ed had } 638 \text { yards by adding } 157+308+172 . \\ \text { Rico had 3 times the number of yards as Ed, so } 638 \times 3=1914 . \\ \text { To find how many more yards Rico had than Ed, I subtracted } 638 \\ \text { from 1914 and got 1276. }\end{array} \\ \hline \mathbf{2} & \begin{array}{l}\text { Note: A variety of explanations are valid as long as the student uses } \\ \text { a mathematically correct approach to solving the problem. }\end{array} \\ \hline \mathbf{l} \text { Student response includes 2 of the 3 elements. If a computation } \\ \text { mistake is made, credit cannot be given for the computation } \\ \text { component, but points can be given for modeling. }\end{array}\right\}$

\quad Unit 3 \#2 Rubric Part A			
Score	Description	\quad	- Reasoning component: Explanation of why Shaun's reasoning
:---			
is incorrect			
- Reasoning component: Explanation on how to use the			
number line to determine the fraction that Shaun's point			
represents			
- Computation component: $\frac{3}{6}$			

	each mark on the number line is $\frac{1}{6}$. So, the third mark is the point $\frac{3}{6}$.
2	Student response includes 2 of the 3 elements.
1	Student response includes 1 of the 3 elements.
0	Student response is incorrect or irrelevant.
	Unit 3 \#2 Rubric Part B
Score	Description
1	Student response includes the following element. - Reasoning component: Describes a process to find a fraction equivalent to $\frac{2}{3}$ Sample Student Response: I can find a fraction equivalent to $\frac{2}{3}$ by multiplying the numerator (2) and denominator (3) by the same number. Note: Other strategies are valid such as showing that another fraction is the same position on a number line.
0	Student response is incorrect or irrelevant.

Unit 3 \#5 Rubric Part A

Score	Description
$\mathbf{1}$	Reasoning component: The student explains the error made. For example: "J ian rounded the quotient up, but that won't work because the remainder of 3 means there are only 3 ounces of honey left, and that isn't enough to fill the last jar." Note: A variety of explanations are possible. As long as the explanation shows a clear understanding of the error made, credit should be awarded.
$\mathbf{0}$	Student response is incorrect or irrelevant.
Score	Description $\mathbf{2}$Student response includes each of the following 2 elements. \bullet Computation component: 551 (6-ounce) jars and \$4,408 Reasoning component: The student explains the steps needed to solve the problem, including correctly interpreting the

	remainder. For example: "I would divide 3,311 by 6 and get a quotient of 551, with a remainder of 5 . This means they could completely fill 551 jars, but the leftover honey wouldn't be enough to fill another jar. I multiplied $551 \times \$ 8$ and got $\$ \$ 4,408$."
$\mathbf{1}$	Student response includes 1 of the 2 elements. If a computation mistake is made, credit cannot be given for the computation component, but points can be given for valid reasoning.
$\mathbf{0}$	Student response is incorrect or irrelevant.

